ORIGINAL ARTICLE

Factors affecting sensitivity to antitumor platinum derivatives of human colorectal tumor cell lines

Noriaki Kitada · Kohji Takara · Tetsuya Minegaki · Chihiro Itoh · Masayuki Tsujimoto · Toshiyuki Sakaeda · Teruyoshi Yokoyama

Received: 10 July 2007 / Accepted: 30 October 2007 / Published online: 21 November 2007 © Springer-Verlag 2007

Abstract

Purpose The aim of this study is to examine the factors affecting sensitivity to cisplatin, carboplatin, and oxaliplatin in human colorectal tumor cell lines.

Methods Caco-2, DLD-1, HCT-15, HCT116, LS180, SW620, and WiDr cells were used. Their growth inhibition by platinum derivatives was evaluated with a WST-1 assay utilizing succinate dehydrogenase activity. Cellular accumulation and DNA-binding of platinum were measured with an inductively coupled plasma mass spectrometer. The mRNA levels of copper transporters (hCtr1, ATP7A, and ATP7B) and organic cation transporters (hOCT1, hOCT2, and hOCT3) were evaluated by the real-time reverse transcription-PCR method using SYBR[®] green.

Results The cytotoxicity of platinum derivatives ranked oxaliplatin > cisplatin > carboplatin in almost all cells used. Cellular accumulation and DNA-binding of platinum varied among the types of cells, but levels were similar on treatment with cisplatin and oxaliplatin, and lower in response to carboplatin. The levels of copper and organic cation transporter mRNAs also differed with cell type. A correlation analysis revealed that sensitivity to platinum

derivatives was dependent in part on the amount of platinum bound to DNA. In addition, the cellular accumulation of platinum and level of ATP7A mRNA may be factors affecting the cytotoxicity of cisplatin, while the cytotoxicity of oxaliplatin was suggested to be affected by the levels of ATP7A and hOCT1 mRNAs.

Conclusion Some factors affecting the sensitivity of tumor cells to platinum derivatives were proposed, and will provide useful information for cancer chemotherapy with platinum derivatives.

Keywords Cisplatin · Carboplatin · Oxaliplatin · Colorectal tumor · Drug sensitivity

Introduction

Platinum derivatives have been used world wide in the treatment of solid tumors in the esophagus, stomach, lung, and ovaries [1]. Cisplatin has been the most important of these drugs for several decades. Severe nephrotoxicity, however, limits the use of cisplatin even now [2]. Other platinum derivatives such as carboplatin and nedaplatin have also been prescribed for patients with solid tumors, and are considered less nephrotoxic than cisplatin [3]. In addition, a third generation platinum derivative, oxaliplatin, was clarified to have unique characteristics showing increased antitumor activity against colorectal cancer [4, 5].

The main mechanism of action for platinum derivatives is the intercalation of platinum into DNA, resulting in the inhibition of DNA synthesis [6]. Thus, the cellular kinetics of platinum is considered a significant factor determining sensitivity to platinum derivatives. As the derivatives differ in effectiveness and safety [7], the identification of factors

N. Kitada · K. Takara (☑) · T. Minegaki · C. Itoh · M. Tsujimoto · T. Yokoyama

Department of Hospital Pharmacy,
Faculty of Pharmaceutical Sciences,
Kyoto Pharmaceutical University,
5 Nakauchi-cho, Misasagi, Yamashina-ku,
Kyoto 607-8414, Japan
e-mail: takara@mb.kyoto-phu.ac.jp

T. Sakaeda Frontier Education Center, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan

affecting the sensitivity of cells should help to enhance clinical outcome in cancer chemotherapy. Regrettably, little such information is available at present.

In the present study, we evaluated the sensitivity to cisplatin, carboplatin, and oxaliplatin of seven human colorectal cancer cell lines. Based on these findings, the relationship between the sensitivity of tumor cells and the factors participating in the cellular kinetics of platinum derivatives, i.e., the accumulation of platinum in cells, the binding of platinum to DNA, or the expression of transporters affecting the incorporation of platinum into cells, were analyzed.

Materials and methods

Chemicals

Cisplatin and carboplatin were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Oxaliplatin was purchased from Sigma-Aldrich Chemical Co. (St Louis, MO, USA). 2-(4-Iodophenyl)-5-(2,4-disulfophenyl)-2*H*-tetrazolium, monosodium salt (WST-1), 1-methoxy-5-methylphenazinium methylsulfate (1-methoxy PMS), and HEPES used in the WST-1 colorimetric assay were purchased from Dojindo Laboratories (Kumamoto, Japan).

Cells and cell culture

Seven kinds of cell lines, Caco-2, DLD-1, HCT-15, HCT116, LS180, SW620, and WiDr, were used as a human colorectal cancer cell model. Cells were cultured in an atmosphere of 95% air and 5% $\rm CO_2$ at 37°C, and subcultured every 3 or 4 days at a density of 2 \times 10⁶ cells/ 100 mm dish. The number of passages for Caco-2, DLD-1, HCT-15, HCT116, LS180, SW620, and WiDr cells was 53–66, 29–39, 58–68, 32–43, 55–64, 101–111, and 30–40, respectively.

WST-1 colorimetric assay

Growth inhibitory activity of platinum derivatives

The growth inhibitory effects of cisplatin, carboplatin, and oxaliplatin were evaluated with a WST-1 colorimetric assay utilizing succinate dehydrogenase activity [8, 9]. Cells $(5 \times 10^3/\text{well})$ were seeded into 96-well plates (Corning Inc., NY, USA) in 100 μ l of culture medium without any drugs on Day 0. The culture medium was exchanged for that containing test drugs at various concentrations on Day 1. After incubation for 72 h at 37°C (on Day 4), the culture

medium was exchanged for 110 μ l of that containing WST-1 solution (10 μ l of WST-1 solution and 100 μ l of culture medium), and 3 h later the absorbance was determined at 450 nm with a reference wavelength of 620 nm using a microplate reader (Spectra FluorTM, Tecan, Switzerland). The 50% growth inhibitory concentrations (IC₅₀) were calculated according to the sigmoid inhibitory effect model $E = E_{\rm max} \times [1 - C^{\gamma}/(C^{\gamma} + {\rm IC_{50}^{\gamma}})]$ using the nonlinear least-squares fitting method (Solver, Microsoft[®] Excel). E and $E_{\rm max}$ represent the surviving fraction (% of control) and its maximum, respectively, and C and γ represent the drug concentration in the medium (μ M) and the sigmoidicity factor, respectively.

Growth rate of cells under the culture conditions

Cells $(5 \times 10^3/\text{well})$ were seeded into 96-well plates as described above, and then cultured in an atmosphere of 95% air and 5% CO₂ at 37°C. The proliferation was evaluated at t = 0, 6, 12, 18, 24, 36, 48, 72, 96, 120, 144, and 168 h with a WST-1 assay, and a growth curve for each cell was drawn. The doubling-time of cell growth was calculated from the logarithmic phase of the curve [8].

Cellular kinetics of platinum

Cellular accumulation

Cells (1×10^6 /well) were precultured for 48 h in 6-well plates. They were washed twice with a warmed Hanks' balanced salt solution (HBSS) containing 25 mM HEPES. The experiments were started by addition of fresh HBSS containing 10 μ M of cisplatin, carboplatin, or oxaliplatin, and the cells were further incubated for the desired period at 37°C. The reaction was terminated by aspiration of the HBSS from the well, followed by three washes with ice-cold phosphate-buffered saline (PBS). After the accumulation experiments, 1 ml of ice-cold pure water was added, and the cells were frozen over 30 min at -80° C. Cells were defrosted at room temperature, and lysed by an ultrasonic wave [10].

Binding of platinum to DNA

Cells (5×10^6) were precultured for 48 h in 100 mm plastic dish. Cells were washed twice with a warmed HBSS, and the reaction was initiated by addition of HBSS containing 10 μ M of cisplatin, carboplatin, or oxaliplatin. After 24 h, the reaction was terminated by removing the HBSS, and then the cells were washed once with ice-cold PBS. Cellular DNA was extracted with a Wizard $^{\circledR}$ SV

genomic DNA purification system (Promega, Madison, WI. USA). Cells were solubilized with 600 µl of lysis buffer, and the lysate was transferred to a Wizard SV minicolumn, and centrifuged at $13,000 \times g$ for 3 min. The wash solution (650 µl) was added to the same column, and the mixture was centrifuged at $13,000 \times g$ for 1 min four times. In addition, the column was centrifuged at $13,000 \times g$ for 2 min to remove ethanol. Next, the column was transferred to a collection tube, 250 µl of nuclease-free water with RNase A solution was added (65°C), and the mixture was incubated for 2 min. DNA was soluted by centrifugation at $13,000 \times g$ for 1 min. The amount of DNA extracted was evaluated by measuring the absorbance of the DNA solution at 260 nm (A260) with a SmartSpecTM 3000 (Bio-Rad, CA, USA) and calculated using the following equation: $A260 \times 50 \,(\mu g/ml)$.

Quantitative analysis of platinum

An aliquot (0.8 ml) of cell lysate or DNA solution was vigorously mixed with 40 µl of 69% nitric acid (specific gravity 1.42, Wako) and 200 µl of 20 ng/ml gallium standard solution in 1% nitric acid (Wako), as an internal standard for assaying. The mixture was centrifuged at $10,500 \times g$ for 10 min at 25°C, and the supernatant was added to 3 ml of 0.55% nitric acid. The amount of platinum was measured with an inductively coupled plasma mass spectrometer (ICP-MS; ICP-MS8400, Shimadzu, Kyoto, Japan) using a standard solution of platinum for atomic absorption spectrometry (Wako). The recovery rate and coefficient of variation in the reproducibility were approximately 100 and 6.2%, respectively, and the standard curves for the assay showed excellent linearity $(r^2 > 0.999)$ from 0.097 to 100 ng/ml. The protein content of the cell lysate was determined by the Lowry method [11] with bovine serum albumin as a standard protein. Protein and DNA contents were used to correct the amount incorporated into cells and DNA-binding of platinum, respectively.

Real-time RT-PCR

The levels of hCtr1, ATP7A, ATP7B, OCT1, OCT2, and OCT3 mRNA were measured with the real-time reverse transcription (RT)-PCR method using SYBR $^{\circledR}$ green. Cells were cultured for 96 h, and then total RNA was extracted from the cells with a GenElute TM Mammalian Total RNA Miniprep kit (Sigma-Aldrich). Aliquots (1 µg) of total RNA were used for RT, using a PrimeScript TM RT reagent kit (Takara Bio, Shiga, Japan) and a thermal cycler (i-Cycler, Bio-Rad). The RT reaction was conducted in 20 µl of reaction buffer at 37°C for 15 min, and terminated by heating at 85°C for 5 s followed by cooling at 4°C.

Real-time PCR was performed with a 7500 Real-Time PCR system (Applied Biosystems, CA, USA) using SYBR Premix Ex TaqTM (Takara Bio). The primers were designed using the Primer Express® program (Applied Biosystems). Their sequences are shown in Table 1. The reaction was performed at 95°C for 10 s, followed by 40 cycles of 95°C for 5 s and 60°C for 34 s. The dissociation stage was initiated at 95°C for 15 s, followed by 1 cycle of 60°C for 1 min and 95°C for 15 s. The fluorescence of the SYBR green dye was determined as a function of the PCR cycle number, giving the threshold cycle (C_T) number at which the amplification reached a significant threshold. The C_T values were used to quantify the PCR product, i.e., the relative expression level of the target gene was expressed as $2^{-\Delta CT}$ [12], and ΔC_T was calculated by subtracting C_T (control gene: β -actin) from C_T (target gene).

Statistical analysis

Comparisons among more than three groups were performed with a non-repeated one-way analysis of variance followed by the Scheffe's F-test, and P-values of less than 0.05 (two-tailed) were considered significant. The correlation analysis was performed using Pearson's correlation coefficient (r).

Table 1 Sequences of oligonucleotide primers designed for real-time PCR

	Forward (5′–3′ orientation)	Reverse (5′–3′ orientation)	Accession no.
hCtr1	ACAAGTCAGCATTCGCTACAATTC	TTGCAGGAGGTGAGGAAAGC	U83460
ATP7A	AGATACTGGGACACTGGAGAAAAA	AGGTCATCCCTTCCACTTTCA	AB117973
ATP7B	TGATTTATAACCTGGTTGGGATACC	ATGAGAGCACCACAGACACAGA	U03464
hOCT1	TCTTCCATCGTCACTGAGTTCAAC	AGAAGCCCGCATTCAAACAG	BC126364
hOCT2	TCTACTCTGCCCTGGTTGAATTC	ATGCAGCCCAAGGGTAACG	BC039899
hOCT3	TAGCCCCATTTCTGCTCTTTC	AGATGGATGCCAGGATACCAA	NM_021977
β -actin	TCATGAAGTGTGACGTGGACATC	TGCATCCTGTCGGCAATG	NM_001101

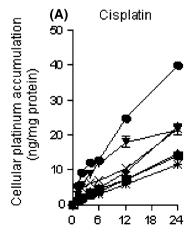
The primers pairs were designed using Primer Express® software

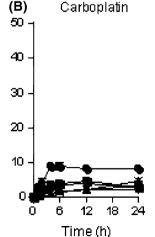
Table 2 IC₅₀ values for platinum derivatives in seven colorectal cancer cell lines

Cell line	IC ₅₀ (μM)				
	Cisplatin	Carboplatin	Oxaliplatin		
Caco-2	16.7 ± 2.27	253 ± 4.72	0.671 ± 0.05		
DLD-1	20.8 ± 0.87	212 ± 5.30	23.2 ± 3.33		
HCT-15	29.5 ± 3.89	190 ± 11.2	2.43 ± 0.15		
HCT116	6.61 ± 1.04	185 ± 10.6	0.766 ± 0.03		
LS180	12.4 ± 2.86	170 ± 20.2	0.902 ± 0.03		
SW620	37.2 ± 2.31	678 ± 65.6	46.4 ± 9.04		
WiDr	13.3 ± 3.89	166 ± 19.3	2.35 ± 0.05		

Cells were precultured for 24 h at a density of 5×10^3 cells/well in 96-well multiplates, and then incubated with platinum derivatives at various concentrations for 72 h. The cytotoxic activity of the derivatives was determined with a WST-1 assay. Each value represents the mean \pm SE (n = 4)

Results


Growth inhibition by platinum derivatives


Table 2 lists the IC₅₀ values for cisplatin, carboplatin, and oxaliplatin in seven human colon cancer cells. The IC50 ranged from 6.6 to 37 µM for cisplatin, from 166 to 678 µM for carboplatin, and from 0.67 to 46 µM for oxaliplatin. In terms of cytotoxic activity, the rank order was oxaliplatin > cisplatin > carboplatin. On the other hand, the growth curves of cells varied, but the doubling times of cell growth were comparable; Caco-2 (25.9 h), DLD-1 (27.4 h), HCT-15 (18.2 h), HCT116 (23.3 h), LS180 (25.2 h), SW620 (27.0 h), and WiDr (35.5 h).

Cellular kinetics of platinum

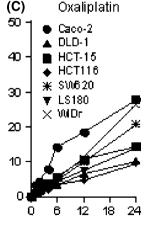

The time course of the cellular accumulation of platinum after exposure to each derivative was examined (Fig. 1).

Fig. 1 Time course of the cellular accumulation of platinum after exposure to platinum derivatives in human colorectal cancer cells. Cells were precultured for 48 h at a density of 1×10^6 cells/well, and then incubated with 10 µM of cisplatin (a), carboplatin (b), or oxaliplatin (c) for the desired period at 37°C. The cellular amount of platinum was measured using ICP-MS. Each point represents the mean \pm SE (n = 3)

(B)

The platinum accumulated in a time-dependent manner. and the amounts differed among the types of cells. In addition, levels were almost the same on treatment with cisplatin and oxaliplatin, but lower in response to carboplatin.

The amount of platinum bound to DNA was examined at 24 h after exposure to the derivatives (Fig. 2). Again, the amounts varied among the cells, being comparable for cisplatin and oxaliplatin, but smaller for carboplatin.

Expression of copper transporter and organic cation transporter mRNAs

The expression levels of the copper transporters hCtr1, ATP7A, and ATP7B, and the organic cation transporters hOCT1, hOCT2, and hOCT3, were examined (Fig. 3). The copper transporter mRNAs were detected in all the cells used here, though levels differed with the type of cell (Fig. 3a-c). The mRNAs of hOCT1 and hOCT2 expressed in the cells, and these levels also varied (Fig. 3d, e). In the case of hOCT3, mRNA expression was observed in all the cells except HCT116 cells, and the level was remarkably higher in SW620 cells than the others (Fig. 3f).

Correlation analysis of the factors affecting cytotoxicity

The relationship between the IC₅₀ and cellular kinetics of the platinum derivatives was analyzed (Fig. 4). The amount of platinum for 24 h after the treatment with cisplatin decreased followed by an increase in the IC₅₀ (Fig. 4a), the two changes showing a weak correlation (r = -0.599). In the case of carboplatin, a positive relation was observed (Fig. 4b), but for oxaliplatin, no correlation was observed (Fig. 4c). On the other hand, for cisplatin, a negative correlation between the amount of platinum

Fig. 2 Amount of platinum bound to DNA 24 h after exposure to platinum derivatives in human colorectal cancer cells. Cells were precultured for 48 h at a density of 5×10^6 cells/dish, and then incubated with 10 µM of cisplatin (a), carboplatin (b), or oxaliplatin (c) for 24 h at 37°C. After the incubation, DNA was extracted from the cells and the amount of platinum bound was measured by ICP-MS. Each bar represents the mean \pm SE (n = 3)

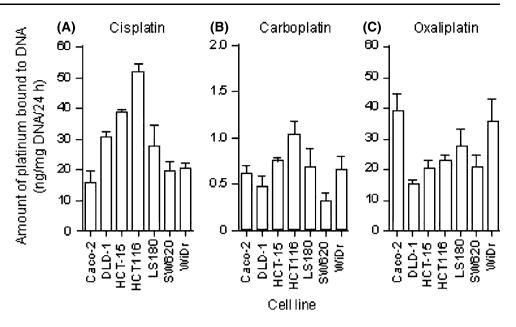
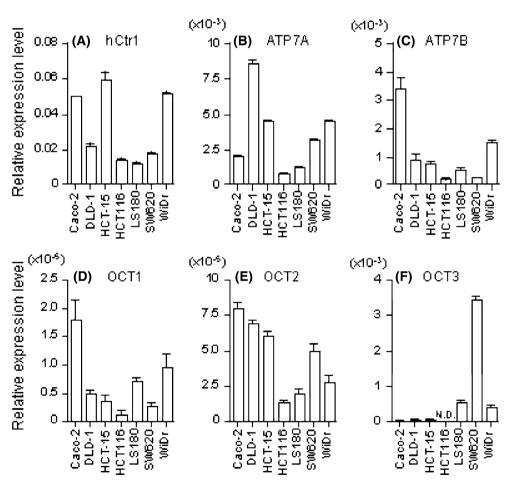



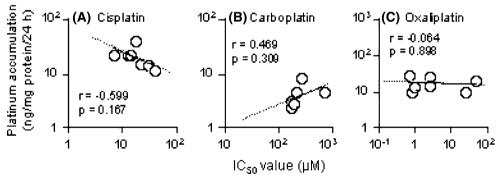
Fig. 3 Level of copper and organic cation transporter mRNAs in human colorectal cancer cells. Total RNA was extracted from the cells, and the levels of hCtr1 (a), ATP7A (b), ATP7B (c), hOCT1 (d), hOCT2 (e), hOCT3 (f) and β -actin mRNAs were measured by a quantitative real-time PCR using SYBR® green. The threshold cycle (C_T) values were used to quantify the PCR product, and the relative expression level of the target gene was expressed as 2 The $\Delta C_{\rm T}$ was calculated by subtracting $C_{\rm T}$ (control gene: β -actin) from $C_{\rm T}$ (target gene). Each bar represents the mean \pm SE (n = 3). ND not detected

bound to DNA and IC_{50} was observed, although it was weak (Fig. 4d-f).

Next, the relationship with the levels of transporters and cytotoxicity or cellular kinetics of platinum derivatives was analyzed (Table 3). The IC_{50} values of cisplatin and oxaliplatin showed a positive correlation with the expression level of ATP7A mRNA, but not so the IC_{50} of carboplatin. In the case of hOCT1, a negative correlation with the IC_{50}

values of carboplatin and oxaliplatin was found. In addition, a significant correlation was observed between the IC₅₀ of cisplatin and level of hOCT2 mRNA, although it was positive.

In the case of cisplatin, the cellular accumulation of platinum showed a higher correlation coefficient for the expression of ATP7B and hOCT1 than for that of the other transporters (Table 3). Oxaliplatin also showed a correlation with the expression levels of ATP7B and hOCT1. In addition, the cellular accumulation of platinum after treatment with carboplatin demonstrated a correlation with the expression levels of ATP7B and hOCT2.


Discussion

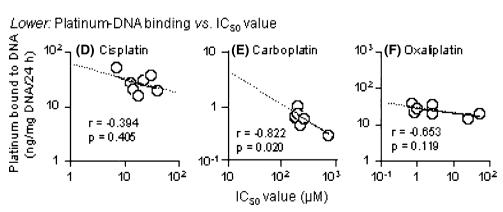

In terms of cytotoxicity, the antitumor platinum derivatives ranked in the order oxaliplatin > cisplatin > carboplatin (Table 2), consistent with a previous report [13]. However, sensitivity varied among the type of cell, although the growth activity in the seven colon cancer cell lines was comparable (a doubling time of 18.2–35.5 h). This discrepancy implies that the sensitivity to platinum derivatives was dependent on factors other than growth activity or rates of DNA synthesis. Therefore, the relationship between the cytotoxicity and cellular kinetics of platinum derivatives was examined in the present study.

Fig. 4 Relationship between the IC50 and cellular accumulation of platinum derivatives or amount of platinum bound to DNA. The IC₅₀ values for platinum derivatives were cited from the data obtained in the WST-1 assay (Table 2). The cellular accumulation of platinum for 24 h and amount of platinum bound to DNA for 24 h were cited from the data in Figs. 1 and 2, respectively. A correlation analysis was carried out using Pearson's correlation coefficient (r)

The cellular levels of platinum after treatment with cisplatin and oxaliplatin were similar, being higher than with carboplatin (Fig. 1). The hydrophobicity, i.e., ClogP, for cisplatin, carboplatin, and oxaliplatin was -1.68, -0.34, and 0.35, respectively [14], and thus the cellular accumulation of platinum was suggested to be dependent on a transport mechanism, not on passive diffusion. On the other hand, after cisplatin treatment, the amount of platinum accumulated was inversely correlated with the IC50 value (Fig. 4). This finding suggested that the cytotoxicity of cisplatin, but not oxaliplatin or carboplatin, was dependent on the cellular accumulation of platinum. To clarify the differences among drugs, the amount of platinum bound to DNA after 24 h of treatment was measured (Fig. 2). In terms of this amount, the derivatives ranked as follows: oxaliplatin = cisplatin > carboplatin, being similar to that in the accumulation experiments. However, in the case of oxaliplatin and carboplatin, a correlation between the IC₅₀ and amount of platinum bound to DNA was observed (Fig. 4e, f), and the amount after cisplatin treatment also tended to show a weak correlation with the IC₅₀ (Fig. 4d). The cytotoxicity of the platinum derivatives was suggested to be partially dependent on the amount of platinum bound to the DNA. On the other hand, the cellular accumulation and DNA-binding of platinum were less extensive with carboplatin as compared to cisplatin or oxaliplatin (Figs. 1, 2). In addition, the ratio of DNA-binding to the

Upper: Platinum accumulation vs. ICso value

Table 3 Relationship between levels of transporters and cytotoxicity or cellular kinetics of platinum derivatives

•	IC ₅₀ value			Accumulation		
	Cisplatin	Carboplatin	Oxaliplatin	Cisplatin	Carboplatin	Oxaliplatin
hCtr1	r = 0.339 (0.480)	r = -0.169 (0.733)	$r = -0.129 \ (0.796)$	$r = 0.215 \ (0.663)$	$r = 0.353 \ (0.460)$	$r = 0.582 \ (0.184)$
ATP7A	$r = 0.673 \; (0.103)$	$r = 0.122 \ (0.806)$	$r = 0.671 \ (0.104)$	$r = -0.479 \; (0.296)$	$r = 0.251 \ (0.608)$	$r = 0.138 \; (0.781)$
ATP7B	$r = 0.061 \ (0.904)$	$r = -0.322 \ (0.491)$	$r = -0.309 \; (0.522)$	$r = 0.625 \ (0.143)$	$r = 0.529 \; (0.239)$	$r = 0.590 \; (0.175)$
hOCT1	$r = 0.125 \ (0.802)$	$r = -0.186 \; (0.707)$	$r = -0.246 \; (0.615)$	$r = 0.572 \ (0.194)$	$r = 0.438 \; (0.347)$	$r = 0.702 \ (0.081)$
hOCT2	$r = 0.773 \ (0.040)$	$r = 0.373 \ (0.434)$	$r = 0.438 \; (0.348)$	$r = -0.101 \ (0.839)$	$r = 0.719 \; (0.070)$	$r = 0.351 \ (0.463)$
hOCT3	$r = 0.134 \; (0.816)$	$r = 0.544 \ (0.291)$	$r = 0.376 \; (0.493)$	$r = -0.398 \; (0.465)$	$r = -0.305 \; (0.585)$	$r = 0.239 \; (0.673)$

The r represents Pearson's correlation coefficient, and the figure in parentheses is the P-value

cellular accumulation of platinum was markedly lower in carboplatin than the other derivatives (data not shown). These findings demonstrated that the cellular kinetics of carboplatin were dissimilar to those of cisplatin and oxaliplatin. However, the detailed mechanism remains unclear, and thus the further investigation is needed.

Some copper transporters such as the uptake transporter hCtr1, and efflux transporters ATP7A and ATP7B, have been demonstrated to control the cellular kinetics of platinum derivatives, suggesting a contribution to the sensitivity of cells [15–17]. In the present study, the expression of hCtr1, ATP7A, and ATP7B mRNA was observed in all the cells, but their levels differed among the cell types (Fig. 3). Therefore, the relationship between these levels and the cellular kinetics or cytotoxicity of platinum derivatives was examined (Table 3). The expression of hCtr1 mRNA showed a positive correlation with the accumulation of platinum, but did not correlate with the IC₅₀. These results imply that the level of hCtr1 mRNA alone could not be used to predict sensitivity to platinum derivatives. Some reports also clarified that the incorporation of cisplatin and oxaliplatin into cells was dependent on a mechanism not involving hCtr1 [3, 18, 19].

ATP7A and 7B were also reported to control the intracellular kinetics of platinum, causing less accumulation [15]. The expression of ATP7A mRNA was positively correlated with the IC₅₀ values of cisplatin and oxaliplatin (Table 3), and especially with cisplatin, the cellular amount of platinum showed a correlation with the expression of ATP7A mRNA (Table 3). It may be that the cytotoxicity of cisplatin was reduced via the ATP7A-mediated efflux of platinum. In the clinical setting, the expression of ATP7A was reported to induce a reduction in the survival rates of patients receiving cisplatin-containing regimens [20], supporting the present findings. However, the expression of ATP7A mRNA might not be a predictive factor for sensitivity to carboplatin and oxaliplatin. On the other hand, the expression of ATP7B mRNA was correlated with the cellular amount of platinum, but not the IC_{50} (Table 3).

Samimi et al. reported that ATP7B acted to accumulate cisplatin and carboplatin, resulting in their isolation from DNA, but not oxaliplatin [21]. Overall, the expression of ATP7B mRNA was suggested not to be enough to predict sensitivity to platinum derivatives.

Recently, organic cation transporters, hOCT1, hOCT2, and hOCT3, as well as copper transporters, have been reported to affect the cellular kinetics of platinum derivatives [3, 22]. The expression of hOCT1 mRNA showed a positive correlation with the cellular amount of platinum (Table 3). Notably, the expression showed a correlation with the IC_{50} for oxaliplatin, different from cisplatin and carboplatin. This raises the possibility that oxaliplatin was incorporated into the cell via hOCT1, an interpretation supported by other reports [3, 22].

In conclusion, the cytotoxicity of platinum derivatives varied with the kind of drug as well as the type of cell. The sensitivity to platinum derivatives of tumor cells was suggested to be controlled in part by the amount of platinum bound to DNA. In addition, the cellular accumulation of platinum and the level of ATP7A mRNA might be factors affecting sensitivity to cisplatin, while the expression levels of ATP7A and hOCT1 mRNAs might affect sensitivity to oxaliplatin. The present findings will provide useful information for the individualization and optimization of dosages in cancer chemotherapy with platinum derivatives.

Acknowledgments The authors are grateful to Associate Professor Kazuki Nagasawa, Ph.D. (Department of Environmental Biochemistry, Kyoto Pharmaceutical University) for technical advice. This work was supported in part by a Matching Fund Subsidy for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

 Ho YP, Au-Yeung SC, To KK (2003) Platinum-based anticancer agents: innovative design strategies and biological perspectives. Med Res Rev 23(5):633–655

- Hartmann JT, Lipp HP (2003) Toxicity of platinum compounds. Expert Opin Pharmacother 4(6):889–901
- Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K (2006) Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1–3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther 319(2):879–886
- Armand JP, Bolgie V, Raymond E, Fizazi K, Faivre S, Ducreux M (2000) Oxaliplatin in colorectal cancer: an overview. Semin Oncol 27(Suppl 10):96–104
- Kidani Y, Noji M, Tashiro T (1980) Antitumor activity of platinum (II) complexes of 1,2-diaminocyclohexane isomers. Gann 71(5):637–643
- Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320
- Boulikas T, Vougiouka M (2004) Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs. Oncol Rep 11(3):559–595
- Takara K, Sakaeda T, Yagami T, Kobayashi H, Ohmoto N, Horinouchi M, Nishiguchi K, Okumura K (2002) Cytotoxic effects of 27 anticancer drugs in HeLa and MDR1-overexpressing derivative cell lines. Biol Pharm Bull 25(6):771–778
- Takara K, Obata Y, Yoshikawa E, Kitada N, Sakaeda T, Ohnishi N, Yokoyama T (2006) Molecular changes to HeLa cells on continuous exposure to cisplatin or paclitaxel. Cancer Chemother Pharmacol 58(6):785–793
- Nagasawa K, Ito S, Kakuda T, Nagai K, Tamai I, Tsuji A, Fujimoto S (2005) Transport mechanism for aluminum citrate at the blood-brain barrier: kinetic evidence implies involvement of system Xc— in immortalized rat brain endothelial cells. Toxicol Lett 155(2):289–296
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275
- Seithel A, Karlsson J, Hilgendorf C, Bjorquist A, Ungell AL (2006) Variability in mRNA expression of ABC- and SLCtransporters in human intestinal cells: comparison between human segments and Caco-2 cells. Eur J Pharm Sci 28(4):291– 299
- Rixe O, Ortuzar W, Alvarez M, Parker R, Reed E, Paull K, Fojo T (1996) Oxaliplatin, tetraplatin, cisplatin, and carboplatin:

- spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute's Anticancer Drug Screen panel. Biochem Pharmacol 52(12):1855–1865
- Kitada N, Takara K, Tsujimoto M, Sakaeda T, Ohnishi N, Yokoyama T (2007) Effects of platinum derivatives on the function and expression of P-glycoprotein/MDR1 in LLC-PK1 cells: in case of carboplatin and nedaplatin. J Cancer Mol 3(1):23–28
- Safaei R (2006) Role of copper transporters in the uptake and efflux of platinum containing drugs. Cancer Lett 234(1):34–39
- Lin X, Okuda T, Holzer AK, Howell SB (2002) The copper transporter CTR1 regulates cisplatin uptake in *Saccharomyces* cerevisiae. Mol Pharmacol 62(5):1154–1159
- Samimi G, Safaei R, Katano K, Holzer AK, Rochdi M, Tomioka M, Godman M, Howell SB (2004) Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res 10(14):4661–4669
- Holzer AK, Manorek GH, Howell SB (2006) Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin. Mol Pharmacol 70(4):1390–1394
- Sharp SY, O'Neill CF, Rogers P, Boxall FE, Kelland LR (2002) Retention of activity by the new generation platinum agent AMD0473 in four human tumour cell lines possessing acquired resistance to oxaliplatin. Eur J Cancer 38(17):2309–2315
- Samimi G, Varki NM, Wilczynski S, Safaei R, Alberts DS, Howell SB (2003) Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clin Cancer Res 9(16 Pt 1):5853–5859
- Samimi G, Katano K, Holzer AK, Safaei R, Howell SB (2004) Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exports ATP7A and ATP7B. Mol Pharmacol 66(1):25–32
- Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A, Chen Y, Komori T, Gray JW, Chen X, Lippard SJ, Giacomini KM (2006) Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res 66(17):8847–8857

